Skip to main content
Sensors
Sensors
Sensors
Main navigation
Home
People
Principal Investigators
Research Scientists and Engineers
Students
All Profiles
Alumni
Former Members
Visiting Scholars
Events
All Events
Events Calendar
News
Pages
Publications
ISL Publications Repository
Research Output
About
Research
Oppotunities
Publications
Patents
Contact Us
tsmc
Analog backpropagation learning circuits for memristive crossbar neural networks
1 min read ·
Thu, Apr 26 2018
News
Circuits
tsmc
CMOS
Krestinskaya, Olga, "Analog backpropagation learning circuits for memristive crossbar neural networks." 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018, 1. The implementation of backpropagation algorithm using gradient descent operation with analog circuits is an open problem. In this paper, we present the analog learning circuits for realizing backpropagation algorithm for use with neural networks in memristive crossbar arrays. The circuits are simulated in SPICE using TSMC 180nm CMOS process models, and HP memristor models. The gradient descent operations are